Electron Identification Background Rejection Detector Parameters and Geometry

Leslie Camilleri

Fermilab and CERN

Argonne Off-axis detector Workshop 25th April 2003

<u>OUTLINE</u>

- I Event Generation
- F Beam issues.
- F Detector set-up
- **II** Useful Variables
- **III** Sampling Frequency
- IV 2D vs 1D
- **V** Event Numbers
- VI Strategy for Background Estimates
- VI CP violation?

Work of many people at Stanford and Fermilab.

EVENT GENERATION:BEAM ISSUES

732 km 10km Off-Axis 14mrad

Beam u_{μ}

Oscillated u_e

Beam ν_e

EVENT GENERATION: DETECTOR SET UP

- F 0.3 $X_o \sim 17.5$ cm Absorber Density 0.71 $gm.cm^{-3}$.
 - ₁ 5 cm air
 - 1 12.5 cm plastic
- F Plane of horizontal (X) strips. 3 cm wide.
- F Plane of vertical (Y) strips. 3 cm wide.

BY IGNORING SUITABLE DETECTOR PLANES THIS ALLOWED STUDIES OF

- F Increasing the absorber thickness.
- F Alternating X and Y read out.

EVENTS GENERATED WITH FLAT SPECTRA:

- F 2000 ν_e events. 1 to 3 GeV.
- F 2000 ν_e events. 3 to 20 GeV.
- F 10000 u_{μ} events. 1 to 3 GeV
- F 10000 u_{μ} events. 3 to 20 GeV

THEN REWEIGHTED TO APPROPRIATE BEAM SPECTRA.

BACKGROUND AND DEFINITION OF VARIABLES

FOUR types of background

- F Beam ν_e CC events.
- F ν_{μ} NC events.
- F u_{μ} CC events with a missed μ .
- F Oscillated ν_{τ} CC events with the τ decaying to an electron or to hadron(s).

The following studies were made by

- F Reconstructing tracks in the events.
- F Studying the track with the Largest number of hits.
- F Examining Global Event characteristics.

TRACK RECONSTRUCTION

For EACH VIEW

- F HOUGH transform.
 - Generate all possible straight lines in 100 SLOPE and 100 INTERCEPT bins.
 - For each slope and intercept find how many hits are within a tolerance.
 - Find which line, LINMAX (SLOPE and INTERCEPT) includes the most hits.
- F Find all the hits that are within 15cm of the LINMAX line.
- F Fit a straight line to these hits.
- F Iterate 3 more times, finding the hits and refitting.
- F Fit a quadratic to the hits included in the last iteration.
- F Associate to the track all hits within 15cm of the quadratic.

BACKGROUND FROM BEAM ν_e

Their distinguishing characteristics will be:

- **F** Their high energy. \Rightarrow Large number of hits in event.
- F The high energy of their electron. \Rightarrow Large number of hits on the electron track.

MUST CUT HARD ON TOTAL NUMBER OF HITS IN EVENT.

BACKGROUND FROM ν_{μ} CC

Their distinguishing characteristic will be:

The number of hits/plane associated to the track MULTIPLICITY.

F ELECTRONS from ν_e CC shower.

MORE than one hit per plane: MULTIPLICITY > 1.

F MUONS from ν_{μ} CC do not shower.

 \downarrow MULTIPLICITY \sim 1.

MUST ALSO CUT HARD ON MULTIPLICITY.

STRATEGY

- F Apply loose cuts to reject OBVIOUS Neutral Currents.
- F Tight cut on TOTAL HITS in event to reject Beam ν_e .
- F Tight cut on MULTIPLICITY in event to reject $\nu_{\mu}CC$.
- F Construct several Probability density functions for Signal ν_e and NC.
- F Combine these to calculate likelihoods for each event to be a Signal ν_e , L^{sig} or a NC L^{NC} .
- F Take the log of the ratio of these likelihoods.

$$R = \log(\frac{L^{sig}}{L^{NC}})$$

F Cut on R such as to make the NC background SMALLER than the BEAM ν_e background: O(10 events).

LOOSE CUTS I

LOOSE CUTS II

LOOSE CUTS III

LOOSE CUTS

Sampling	$0.3 X_0$	0.6 X_0
Total hits	$32 \leq Tot \leq 100$	$16 \leq Tot \leq 50$
Track hits	$24 \leq Tot \leq 100$	$12 \leq Tot \leq 50$
P_T	≤ 40.	\leq 20.
χ^2	\leq 100.	\leq 100.
Track hits/plane	$1.3 \leq Mult \leq 3.0$	$1.3 \leq Mult \leq 3.0$
Gap plane	eq 1	eq 1

Particle Density Functions I

- F FOUR 2-D histograms of relevant variables for NC events and same plots for Signal events.
- F Smoothed.
- $\mathbf{F} \ P_1^s, P_2^s, P_3^s, P_4^s$ for the signal.
- ${\bf F}\ P_1^b, P_2^b, P_3^b, P_4^b$ for the background.

- F Num. Track hits vs Fraction of Event hits associated to track. P(ntr,y).
- F Angle of track to beam vs Total Num. Event hits. P(ang,nto).

Particle Density Functions II

- \mathbf{F} P_T vs Multiplicity. $\mathbf{P}(\mathsf{pt},\mathsf{mul})$.
- \mathbf{F} χ^2 vs Plane of first gap on track. $\mathbf{P}(\mathsf{chi},\mathsf{pl})$.

For each event compute:

$$L^{sig} = P^{s}(ntr, y) \times P^{s}(ang, nto) \times P^{s}(pt, mul) \times P^{s}(chi, pl)$$

$$L^{sig} = P^{NC}(ntr, y) \times P^{NC}(ang, nto) \times P^{NC}(pt, mul) \times P^{NC}(chi, pl)$$

and

$$R = \log(\frac{L^{\text{sig}}}{L^{\text{NC}}})$$

$0.6~X_0~{\sf Example}$

Cut at R > 3.5

AN ADDITIONAL CUT

Also ran the $\nu_{\mu}CC$ events through the same analysis.

Most of the background in BOTH NC and CC events is at LOW y (the fraction of the event hits associated to electron.

Also Reject events at y < 0.7

Leslie Camilleri

INPUT

F Signal:

$$\sin^2 2 heta_{13} = 0.1$$

$$\Delta m^2 = 2.4 imes 10^{-3}$$

- F Signal Efficiency: Survivors after cuts divided by FULL oscillated spectrum.
- F Location: 735 km 10km off-axis.
- F Detector: 50 ktons. 42.5 ktons after fiducial cut.
- F Running time: 5 years at $4.0 \times 10^{+20}$ pots/year.
- F Beam
 - $_{\scriptscriptstyle 1}$ ν_{μ} 114.7 CC events per kton.year.
 - $_{\scriptscriptstyle 1}$ ν_e 2.5 CC events per kton.year.
- F Figure of Merit

$$FOM = \frac{Number\ of\ Signal\ Events}{\sqrt{Total\ Number\ of\ Background\ Events}}$$

SAMPLING FREQUENCY RESULTS

 $0.3~X_0~{\sf X}$ and ${\sf Y}$

50 ktons, 5 years, 4 x 10^{20} pot/yr, 85% Fid. volume

	$0.3~X_0~{\sf X}$ and ${\sf Y}$	$0.6~X_0~{\sf X}$ and ${\sf Y}$
NC efficiency	1.26×10^{-3}	1.16×10^{-3}
$ u_{\mu}$ NC background	14.5	13.3
CC efficiency	3.56×10^{-4}	4.38×10^{-4}
$ u_{\mu}$ CC background	8.8	10.8
Beam $ u_e$ efficiency	0.068	0.059
Beam $ u_e$ background	36.3	31.3
Total background	59.6	55.4
Signal efficiency	0.424	0.349
Signal events	295.0	243.5
Figure of Merit	38	33

Thin absorber: 16% better Figure of Merit

$\frac{\textit{X and Y vs X or Y: Given NUMBER of active planes.}}{0.6~X_0~\mathsf{X}~\mathsf{and Y}}$

50 ktons, 5 years, 4 x 10^{20} pot/yr, 85% Fid. volume

	$0.3 X_0 X \text{ or } Y$	$0.6~X_0~{\sf X}$ and ${\sf Y}$
NC efficiency	8.4×10^{-4}	1.16×10^{-3}
$ u_{\mu}$ NC background	9.5	13.3
CC efficiency	4.10×10^{-4}	4.38×10^{-4}
$ u_{\mu}$ CC background	10.0	10.8
Beam $ u_e$ efficiency	0.058	0.059
Beam $ u_e$ background	31.0	31.3
Total background	50.5	55.4
Signal efficiency	0.335	0.349
Signal events	233.5	243.5
Figure of Merit	33	33

No difference

STAN'S ANALYSIS

- F For a given number of active planes:
 - $0.3~X_0~{\sf X}$ or Y and $0.6~X_0~{\sf X}$ and Y.
- F Sampling Frequency $0.3 X_0$ and $0.6 X_0$.
- F Gaussian beam centred at 2 GeV and half width 0.4 GeV for signal and background.
- F Sequential cuts.

	$0.3 X_0 X \text{ or } Y$	$0.6~X_0~{\sf X}$ and ${\sf Y}$	$0.3\;X_0\;X\;and\;Y$
$ u_{\mu}$ NC background	5.6	6.3	16.0
$ u_{\mu}$ CC background	7.7	7.3	6.3
Beam $ u_e$ background	15.0	15.7	22.3
Total background	28.3	29.3	44.6
Signal efficiency	0.317	0.322	0.466
Signal events	169.7	171.9	249.2
Figure of Merit	32	32	37

CONCLUSIONS

- F Sampling Frequency: Thinner aborber improves FOM by 16%.
- F X and Y vs X or Y: For a given number of planes:
 No Difference

Leslie Camilleri

Fermilab-Stanford Comparison

Stanford analysis with:

- **F** Realistic ν_e and ν_μ beams.
- F Thin segmentation.
- $\Delta m^2 = 2.8 \times 10^{-3}$

	Fermilab	Stanford
NC efficiency	1.26×10^{-3}	3.9×10^{-3}
$ u_{\mu}$ NC background	14.5	31.0
CC efficiency	3.56×10^{-4}	6.4×10^{-4}
$ u_{\mu}$ CC background	8.8	15.0
Beam $ u_e$ efficiency	0.068	0.048
Beam $ u_e$ background	36.3	24.0
Total background	59.6	70.0
Signal efficiency	0.42	0.41
Signal events	295	323
Figure of Merit	38	39

Very Compatible

CONCLUSIONS ON GEOMETRY

Running with a THICKER sampling only worsens the FOM by 16%, which is still acceptable.

To use a THICKER absorber and recover the 16%:

- F Run longer \rightarrow Higher Running costs.
- F Increase overall detector mass by 30%.
 - → More absorber and building costs to be compared to savings on half the active detector costs
- F If RPC's are used, install them every $0.3 \times_0$ but only instrument alternate X and Y strip planes. Install missing electronics when more funds become available.
 - → Only possible if electronics are NOT buried within detector

BACKGROUND EVALUATION

As much as possible base background estimates on the DATA themselves.

Beam ν_e

- F Measure in NEAR detector.
- F Validate Monte Carlo Beam prediction.
- F Use Monte Carlo to extrapolate to FAR detector.
- Validate extrapolation in HIGH Energy region where no oscillated signal is expected. BUT different origin of LOW energy ν_e μ decay, and of HIGH energy ν_e K decay.

BACKGROUND EVALUATION II

ν_{μ} CC

- ${f F}$ Measure RECOGNIZED $u_{\mu}{\sf CC}$ in NEAR detector
- F Validate Monte Carlo Beam prediction. Important for 2 reasons.
- F 1st Reason: ν_{μ} CC Background evaluation.
 - Extrapolate to FAR detector.
 - Apply SURVIVAL probability.
 - Validate Monte Carlo extrapolation with RECOGNIZED ν_{μ} CC in FAR detector.
 - Use validated Monte Carlo to compute SMALL number of UNRECOGNIZED ν_{μ} CC background.
- F 2nd Reason: Needed for Neutral current background estimates.

$u_{\mu}\mathsf{NC}$

- F The ν_{μ} NC measured in the NEAR detector will be a MIXTURE of real ν_{μ} NC and UNRECOGNIZED ν_{μ} CC events. This mixture will be DIFFERENT in the NEAR and FAR detectors because of Oscillations.
- F From the measured number of ν_{μ} CC events in NEAR detector, compute, using the Monte Carlo, the SMALL number of UNRECOGNIZED ν_{μ} CC events.
- **F** From these calculate the **REAL** number of ν_{μ} NC.
- **F** Extrapolate to FAR detector.
- F EXTRA CHECK: Use reconstructed ν_{μ} CC as a Neutral Current simulator: Ignore the Muon.

Calculation by Stephen Parke

- F At maximum of oscillation.
- F Maximum CP violation.
- **F** Two values of Δm_{12}^2 .
- F Run 1.5 years with Neutrino's and 4.5 years with Anti-neutrinos. To compensate for
 - the smaller cross-sections (factor of 2).
 - and the different π^+ , π^- production rates (factor of 1.5).

CP violation Possibilities

With the efficiencies and backgrounds of the $0.3\ X_0$ set up. Calculate the number of standard deviations on the DIFFERENCE

between the Neutrino and Antineutrino Rates.

Open circles: no background. Closed circles: background included.

$$\Delta m_{12}^2 = 1.5 \times 10^{-4} \text{ eV}^2$$

$$\Delta m_{12}^2 = 7.0 \times 10^{-5} \text{ eV}^2$$

ENCOURAGING!

Work List

- F Improve ν_{μ} background rejection.
 - Better tracking.
 - Use of Multi-Track information.
 - Better Likelihoods.
- **F** Any way to reduce ν_e BEAM background?
- **F** Estimate background from ν_{τ} .
- F Use different samples to define PDF's and estimate background.

CONCLUSIONS

- F The background level is MANAGEABLE.
- F There are schemes to estimate it.
- F The SIGNAL efficiency has improved from 29% in the LOI to 42%.
- F A thicker absorber is possible and reduces the FOM by a modest 16%.
- F Keeping X,Y planes together or separating them makes NO DIFFERENCE for a GIVEN number of detector planes.
- F If Nature is kind, a first look at CP violation could be possible.